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In this paper, the dynamic behaviour of a double pendulum system in the
vicinity of several compound critical points is explored through both analytical
and numerical approaches. Four types of critical points are considered, which are
characterized by a double zero eigenvalue, a simple zero and a pair of pure
imaginary eigenvalues, and two pairs of pure imaginary eigenvalues including
resonant and non-resonant cases. With the aid of normal form theory, the explicit
expressions for the critical bifurcation lines leading to incipient and secondary
bifurcations are obtained. Possible bifurcations leading to 2-D and 3-D tori are
also investigated. Closed form stability conditions of the bifurcation solutions are
presented. A time integration scheme is used to find the numerical solutions for
these bifurcation cases, which agree with the analytic results. Finally, numerical
simulation is also applied to obtain double-period cascading bifurcations leading
to chaos.
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1. INTRODUCTION

A non-linear autonomous system may exhibit complex dynamic behaviour in the
vicinity of a compound critical point. According to the structure of the Jacobian
of the system evaluated at the critical point, the systems may be classified, in
general, as codimension one, codimension two, etc. [1]. There are three
codimension two systems characterized by (1) a double zero eigenvalue, (2) a
simple zero and a pair of pure imaginary eigenvalues, and (3) two pairs of pure
imaginary eigenvalues. It has been shown that not only static bifurcations but also
dynamic (periodic) bifurcations may occur even in the vicinity of a double zero
critical point (the lowest order compound critical point) of a non-linear
autonomous system [1, 2]. (In this paper, a dynamic bifurcation means that for
a given set of system parameters a motion bifurcates from an equilibrium or
another movement.) Systems characterized by a critical point with a simple zero
and a pair of pure imaginary eigenvalues have also been considered by many
researchers (e.g., see references [1, 3, 4]). In addition to static and dynamic
bifurcations, such a system may have the interaction between the static and
dynamic modes leading to two-dimensional (2-D) tori. When a critical point of
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the system is characterized by two pairs of pure imaginary eigenvalues, the system
may exhibit periodic solutions as well as more complex phenomena
such as quasi-periodic motions on 2-D or 3-D tori (for example, see references
[1, 5, 6]).

Many physical or engineering systems are able to exhibit complex dynamical
behaviour in the vicinity of a codimension two compound critical point. A
double pendulum system may be the simplest one of such systems. Many
researchers have studied the double pendulum to show bifurcation and stability
properties of the system in the vicinity of a critical point. For example, Mandadi
and Huseyin [7] considered the double pendulum system for various compound
critical points including a double zero, a triple zero, and a double zero and a
pair of pure imaginary eigenvalues, and derived explicit approximate solutions
by using a perturbation technique [8]. However, only divergence (static)
bifurcations were studied in their paper. Later, Scheidl et al. [9] applied an
averaging method to obtain the general formulae for both stationary and periodic
solutions bifurcating from a critical point characterized by a simple zero and a pair
of pure imaginary eigenvalues. However, possible secondary bifurcations and
sequence of bifurcations leading to quasi-periodic motions on 2-D tori were not
discussed. When the double pendulum system is characterized by a critical point
with two pairs of pure imaginary eigenvalues, the resonant and non-resonant
behaviour are usually concerned (for example, see reference [10]). However,
instead of the double pendulum, many researchers used models of coupled
oscillators to study, in particular, bifurcations into invariant tori (e.g., see
references [11–19]). It has been noticed that most work done related to a double
pendulum has been focused on analytic study and not many numerical results have
been published.

In this paper, both analytical and numerical approaches are employed to
consider the double pendulum system. All the three types of compound critical
points will be studied in detail. Normal form theory, bifurcation and stability
theory are used to find closed form solutions for equilibria, periodic and
quasi-periodic motions. Stability conditions for these bifurcation solutions are
obtained explicitly. Moreover, critical boundaries along which incipient,
secondary and tertiary bifurcations leading to 2-D and 3-D tori are also derived.
All the analytic results are obtained by using a symbolic computation language
Maple. Furthermore, a time integration scheme is used to find all the numerical
solutions corresponding to the analytic study. It is shown that all numerical
solutions agree with the analytic prediction, at least qualitatively.

In the next section, the mathematical model for the double pendulum system
is derived in terms of a set of first-order differential equations. Sections 3, 4 and
5 are devoted to the studies on the dynamical behaviour of the system in the
vicinity of the critical points: a double zero, a simple zero and a pair of pure
imaginary eigenvalues, and two pairs of pure imaginary eigenvalues, respectively.
In section 6, 1:1 primary resonance is considered to find phase-locked periodic
solutions. Section 7 presents the numerical results showing that the double
pendulum exhibits period-doubling cascading bifurcations leading to chaos.
Finally, conclusions are drawn in section 8.
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2. PROBLEM STATEMENT

The double pendulum system shown in Figure 1 consists of two rigid weightless
links of equal length l which carry two concentrated masses 2m and m,
respectively. A follower force P1 and a constant directional force (vertical) P2 are
applied to this system.

The system energy for the three linear springs h1, h2 and h3 is assumed to be given
by [7]

V= 1
2[(h1 + h2 + h3l2)u2

1 +2(h3l2 − h2)u1u2

+ (h2 + h3l2)u2
2 ]− 1

6h3l2(u1 + u2)(u3
1 + u3

2 ), (1)

where u1 and u2 are generalized co-ordinates which specify the configuration of the
system completely.

The kinetic energy T of the system is expressed by

T=
ml2

2V2 [3u� 21 + u� 22 +2u� 1u� 2 cos (u1 − u2)], (2)

where V is an arbitrary value rendering the time variable non-dimensional, and
the overdot denotes differentiation with respect to the non-dimensional time
variable t and t=Vt.

The components of the generalized forces corresponding to the generalized
co-ordinates u1 and u2 may be written as

Q1 =P1l sin (u1 − u2)+2P2l sin u2, Q2 =P2l sin u2, (3)

Figure 1. A double pendulum system.
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and the damping can be expressed by

D= 1
2[d1u� 21 + d2(u� 1 − u� 2)2]+ 1

4[d3u� 41 + d4(u� 1 − u� 2)4], (4)

where d1, d2 represents the linear parts and d3, d4 describe the non-linear parts,
respectively.

With the aid of the Langrangian equations, in addition, choosing the state
variables

z1 = u1, z2 = u� 1, z3 = u2 and z4 = u� 2, (5)

and rescaling the coefficients to be dimensionless coefficients as

f1 =
h1V

2

ml2
, f2 =

h2V
2

ml2
, f3 =

h3V
2

m
, f4 =

P1V
2

ml
, f5 =

P2V
2

ml
,

f6 =
d3V

4

ml2
, f7 =

d4V
4

ml2
, h1 =

d1V
2

ml2
, h2 =

d2V
2

ml2
, (6)

one can derive a set of first order differential equations up to third order terms
as follows:

dz1

dt
= z2,

dz2

dt
= (−1

2 f1 − f2 + 1
2 f4 + f5)z1 − (1

2h1 + h2)z2 + ( f2 − 1
2 f4 − 1

2 f5)z3 + h2z4

+(1
4 f1 + 3

4 f2 − 1
3 f4 − 2

3 f5)z3
1 + (−3

4 f2 − 1
2 f3 + 1

3 f4 + 7
12 f5)z3

3 + f7z3
4

−(1
2 f6 + f7)z3

2 + (3
4h2 + 1

4h1)z2
1z2 − (1

2 f1 + 9
4 f2 − 1

2 f3 − f4 − 3
2 f5)z2

1z3

−3
4h2z2

1z4 − 1
2z1z2

2 + 1
2z

2
2z3 +3f7z2

2z4 + (1
4 f1 + 9

4 f2 − f4 − 3
2 f5)z1z2

3

+(1
4h1 + 3

4h2)z2z2
3 − 3

4h2z2
3z4 − 1

2z1z2
4 −3f7z2z2

4 + 1
2z3z2

4

−(1
2h1 + 3

2h2)z1z2z3 + 3
2h2z1z3z4,

dz3

dt
= z4,

dz4

dt
=(1

2 f1 +2f2 − f3 − 1
2 f4 − f5)z1 + (1

2h1 +2h2)z2 + (−2f2 − f3 + 1
2 f4 + 3

2 f5)z3

−2h2z4 − (1
2 f1 + 5

4 f2 − 1
6 f3 − 7

12 f4 − 7
6 f5)z3

1 + (5
4 f2 + 7

6 f3 − 7
12 f4 − f5)z3

3

+(1
2 f6 +2f7)z3

2 −2f7z3
4 − (1

2h1 + 5
4h2)z2

1z2 + ( f1 + 15
4 f2 − 1

2 f3 − 7
4 f4 − 11

4 f5)z2
1z3

+5
4h2z2

1z4 + 3
2z1z2

2 − (1
2 f1 + 15

4 f2 − 1
2 f3 − 7

4 f4 − 5
2 f5)z1z2

3 − 3
2z

2
2z3

−6f7z2
2z4 − (1

2h1 + 5
4h2)z2z2

3 + 5
4h2z2

3z4 + 1
2z1z2

4 +6f7z2z2
4 − 1

2z3z2
4

+(h1 + 5
2h2)z1z2z3 − 5

2h2z1z3z4, (7)

where fi e 0 (i=1, 2, 3) due to physical conditions, and f4 and f5 (or P1 and P2)
are used to indicate the system parameters for the first two bifurcation cases
considered in sections 3 and 4, while h1 and h2 for the remaining three bifurcation
cases are studied in sections 5, 6, and 7.
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The Jacobian matrix of equation (7) evaluated at an arbitrary point on the initial
equilibrium solution zi =0 takes the form

0 1 0 0

−
1
2

f1 − f2 +
1
2

f4 + f5 −h2 −
1
2

h1 f2 −
1
2

f4 −
1
2

f5 h2

G
G

G

G

G

K

k

G
G

G

G

G

L

l

J=
0 0 0 1

,

1
2

f1+2f2−f3−
1
2

f4−f5 2h2 + 1
2h1 −2f2 − f3 +

1
2

f4 +
3
2

f5 −2h2

(8)

from which one may obtain the characteristic polynomial

P(l)= l4 + a1l
3 + a2l

2 + a3l+ a4, (9)

where

a1 =
1
2

h1 +3h2,

a2 =3f2 +
1
2

h1h2 +
1
2

f1 − f4 −
5
2

f5 + f3,

a3 =2h2 f3 −
1
2

h1 f5 +
1
2

f1h2 +
1
2

h1f3 +
1
2

h1f2 −
3
2

h2 f5,

a4 =2f2 f3 −
3
2

f2 f5 +
1
2

f1 f2 +
1
2

f1 f3 −
1
2

f1 f5 +
1
2

f4 f5 −
3
2

f5 f3 + f 2
5 − f4 f3. (10)

Using the Hurwitz criterion [20], one may show that when

a1 q 0, a2 q 0, a4 q 0 and a3(a1a2 − a3)− a4a2
1 q 0, (11)

the initial equilibrium solution zi =0 is stable. It should be noted that the
conditions given in equation (11) imply a3 q 0, which is of course as expected. Now
let us consider the violations of the four conditions given in equation (11) leading
to codimension one bifurcations occurring from the stable equilibrium zi =0. It
is not difficult to find from equations (11) that the condition which may be first
violated is either a4 q 0 or a3(a1a2 − a3)− a4a2

1 q 0, since if a1 crosses zero first (i.e.,
positive a1 becomes zero) while a2, a3 and a4 are still positive, then the fourth
condition becomes −a2

3 Q 0, which had already crossed zero. Similarly, if a2

crosses zero first, but a1, a2 and a4 are still positive, then the fourth condition
becomes −a2

3 − a4a2
1 Q 0, which again already violates the stability conditions.

Thus, there exist only two types of codimension one bifurcations which may occur
from the initial equilibrium: One is a static bifurcation when a4 =0, which gives
a zero eigenvalue at the critical point; the other is a dynamic (Hopf) bifurcation
when a3(a1a2 − a3) − a4a2

1 =0 under which the characteristic polynomial (9) has
one pair of pure imaginary eigenvalues.

Similarly, one can discuss and find the conditions leading to codimension two
bifurcations, which are studied in detail in the following sections.
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3. A DOUBLE ZERO EIGENVALUE

We start with the simplest case of codimension two bifurcations in which the
characteristic polynomial (9) is supposed to have a double zero and two distinct
negative eigenvalues

l1,2 =0, l3 =−1, l4 =−3, (12)

which implies that a1 =4, a2 =3 and a3 = a4 =0. The values of the physical
parameters may then be determined from equation (10), and one choice
corresponding to the critical point is defined by

f1 =8, f2 =10, f3 =
32
11

, f4 =
134
11

, f5 =
100
11

, f6 = f7 =0, h1 =2, h2 =1.

(13)

Choosing f4 and f5 (initially, P1 and P2) as the parameters, and then using the
parameter transformation

f4 =
134
11

+ m1, f5 =
100
11

+ m2, (14)

and the state variable transformation

z1 1 0 −1 −2 x1

z2 0 1 1 6 x2

g
G

G

G

G

F

f

h
G

G

G

G

J

j

G
G

G

G

G

K

k

G
G

G

G

G

L

l

g
G

G

G

G

F

f

h
G

G

G

G

J

j

z3 =
13
7

80
49

−
4
3

1 x3 , (15)

z4 0
13
7

4
3

−3 x4

one may transform equation (7) into a new system:

dx1

dt
= x2 +087

77
m1 +

1871
1386

m21x1 +0 899
1078

m1 +
4211
485

m21x2

−029
66

m1 +
67
297

m21x3 +087
22

m1 +
1469
198

m21x4 +Nf1,

dx2

dt
=−0 6

11
m1 +

10
33

m21x1 −031
77

m1 +
26
231

m21x2

+0 7
33

m1 −
14
99

m21x3 −021
11

m1 +
112
33

m21x4 +Nf2,
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dx3

dt
=−x3 +0 9

11
m1 +

213
154

m21x1 +0 93
154

m1 +
531
539

m21x2

−0 7
22

m1 +
5
11

m21x3 +063
22

m1 +
123
22

m21x4 +Nf3,

dx4

dt
=−3x4 −0 9

77
m1 +

233
1386

m21x1 −0 93
1078

m1 +
577
4851

m21x2

+0 1
22

m1 +
13
297

m21x3 −0 9
22

m1 +
155
198

m21x4 +Nf4, (16)

where the non-linear functions Nfi are given in Appendix A. The Jacobian matrix
of equation (16) evaluated on the initial equilibrium solution xi =0 at the critical
point m1c = m2c =0 is now in the canonical form

0 1 0 0

0 0 0 0
G
G

G

K

k

G
G

G

L

l

J(xi =0) = 0 0 −1 0 . (17)

0 0 0 −3

3.1.  

The local dynamic behaviour of system (16) is characterized by the critical
variables x1 and x2. Furthermore, the bifurcation solutions for the non-critical
variables x3 and x4 may be determined from equation (16) up to leading order
terms as

x3 =0 9
11

m1 +
213
154

m21x1 +0 93
154

m1 +
531
539

m21x2

+
4769
539

x3
1 +

1 505 233
369 754

x3
2 +

94 296
3773

x2
1x2 +

503 385
26 411

x1x2
2 ,

x4 =−0 3
77

m1 +
233
4158

m21x1 −0 31
1078

m1 +
557

14 553
m21x2

−
38 491
101 871

x3
1 −

34 456 445
209 650 518

x3
2 −

69 448
64 827

x2
1x2 −

4 012 927
4 991 679

x1x2
2 . (18)

Therefore, one may verify that neglecting x3 and x4 (i.e., setting x3 = x4 =0) in the
first two equations of equations (16) does not affect the results of the bifurcation
solutions (x1, x2) and their stability conditions up to leading order terms. So, in
order to consider the bifurcation and stability properties of system (16) in the
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vicinity of the critical point c, one only needs to analyze the following simpler
two-dimensional system:

dx1

dt
= x2 +087

77
m1 +

1871
1386

m21x1 +0 1
36

m1 +
2
9

m21x2 +
330 733
33 957

x3
1

+
275 353 739
69 883 506

x3
2 +

6 593 768
237 699

x2
1x2 +

33 961 273
1 663 893

x1x2
2 ,

dx2

dt
=−0 6

11
m1 +

10
33

m21x1 −031
77

m1 +
26
231

m21x2 −
5108
1617

x3
1

−
1 423 276
1 663 893

x3
2 −

103 856
11 319

x2
1x2 −

489 232
79 233

x1x2
2 , (19)

corresponding to the Jordan block with a double zero of index one eigenvalue.
The reduced system (19) can be easily verified by using the center manifold theory
[21, 22].

Now, based on equation (19), the results and formulae obtained previously [2]
can be applied here. It is noted that system (19) is a special case listed in the last
column of Table 1 of reference [2]. Applying the general formula yields the
following results.

The stability conditions for the initial equilibrium solution xi =0 are described
by

18m1 +10m2 q 0 and 144m1 +245m2 Q 0, (20)

which lead to two critical bifurcation lines. One of these is

L1: 18m1 +10m2 =0 (144m1 +245m2 Q 0) (21)

along which a static bifurcation solution takes place from the initial equilibrium
solution and the solution is expressed by

x2
1 =−

49
2554

(9m1 +5m2),

x2 =
1

252 846
(139 545m1 −105 086m2)x1. (22)

It is noted that this special case is a so called pitchfork bifurcation.
On the other hand, the second critical line

L2: 144m1 +245m2 =0 (18m1 +10m2 q 0), (23)

describes a dynamic boundary where the initial equilibrium solution loses its
stability and bifurcates into a family of limit cycles. Again from Table 1 of
reference [2], one may find the stability condition for the family of limit cycles,
given by

g11 − g22 =
32 411
1078

q 0, (24)

so the family of limit cycles bifurcating from the initial equilibrium is unstable.
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The static bifurcation solution (22) becomes unstable on the third critical line,
described by

L3: 691 209m1 +173 300m2 =0 (18m1 +33m2 Q 0), (25)

from which another family of limit cycles—which is usually called secondary Hopf
bifurcations—occurs. The frequency of this family of limit cycles is

vc =X−
2
33

(18m1 +10m2)q 0, (26)

where 18m1 +10m2 Q 0 since the secondary Hopf bifurcation solution exists in the
region located on the left of the critical line L1 (see Figure 2). The stability
condition for this family of limit cycles can be obtained as follows: first translate
system (19) from the initial equilibrium xi =0 to the static bifurcation solution (22)
(which implies that the static bifurcation solution now represents the origin in the
new co-ordinate system), and then use the formula given in Table 1 of reference
[2] to find that the leading term of g11 − g22 is given by

g11 − g22 =−
369 063
30 184vc

Q 0 (since vc q 0). (27)

Therefore, the secondary Hopf bifurcation solution is stable.
The critical bifurcation lines are illustrated in the parameter space shown in

Figure 2, where the numbers given in the brackets denote the slope of the critical

Figure 2. Bifurcation diagram for the case of double-zero eigenvalue.
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lines. The notations, E.S., S.B., H.B., 2nd H.B. and 2-D Tori represent initial
equilibrium solution, static bifurcation solution, Hopf bifurcation solution,
secondary Hopf bifurcation solution and 2-D tori, respectively. The stable region
for the E.S. is bounded by the critical lines L1 and L2. The S.B. solution branching
off the critical line L1 is stable in the region bounded by the critical lines L1 and
L3, while the periodic solutions bifurcating from the critical line L2 is unstable. The
2nd H.B. solution is stable in the region bounded by the critical lines L3 and L4,
the critical line L4 is determined by a numerical approach.

3.2.  

Numerical results have been obtained by using a time integration
scheme—fourth-order Runge–Kutta method. The numerical computation is
performed on the basis of the original differential equation (7). Different
parameter values of m1 and m2 are chosen from the different regions shown in
Figure 2 to confirm the analytic results obtained in the previous subsection. The
black circle dots shown in the parameter space (see Figure 2) indicate these
parameter values. For the parameter value (m1, m2)= (0·3, −0·1), which is located
above the critical line L2, numerical results show that any solution starting from
an arbitrary initial point diverges to infinity, indicating that the H.B. solution is
unstable, as predicted by the analytic study. When the parameter value is chosen
from the stable region of the E.S., say, (m1, m2)= (0·18, −0·18), a numerical
solution starting from an initial point (z1, z2, z3, z4)= (0·03, 0·0, 0·03, 0·0) is
obtained, which converges to the origin, implying that the E.S. is stable. This is
shown in Figure 3, where the phase trajectories are projected onto the z1–z2 and
z3–z4 sub-spaces. It should be noted that since here the study is focused on the local
dynamic behavior of the double pendulum system in the vicinity of a critical point,
so the parameter values (m1, m2) should be chosen near the critical point
(m1, m2)= (0, 0).

If one chooses (m1, m2)= (0·03, −0·09), which is located in the region where
stable S.B. solutions exist, the first order approximate solution of a S.B. can be
determined from the closed form expressions (22) and (18) as

x1 =0·0588, x2 =0·0032, x3 =−0·0041, x4 =0·0002. (28)

Figure 3. Trajectory starting from (z1, z2, z3, z4)= (0·03, 0·0, 0·03, 0·0) converges to the E.S. when
(m1, m2)= (0·18, 0·18).
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Figure 4. Trajectory starting from (z1, z2, z3, z4)= (0·01, −0·01, 0·01, 0·01) converges to the S.B.
when (m1, m2)= (0·03, 0·09).

Then the linear transformation (15) is used to find

(z1, z2, z3, z4)= (0·0625, 0·0, 0·1199, 0·0). (29)

With the parameter value (m1, m2)= (0·03, −0·09), a numerical solution starting
from the initial point (z1, z2, z3, z4)= (0·01, −0·005, 0·01, 0·01) has been obtained,
which converges to a S.B. solution (z1, z2, z3, z4)= (0·0526, 0·0, 0·0958, 0·0), as
shown in Figure 4. Comparing this numerical result with the approximation
solution (29) indicates an error of about 20%, which is caused by the non-linearity
of the system.

It is noted from equation (22) that there should be two S.B. solutions which exist
simultaneously. In fact, one may see from the original system (7) that if (z1, z2,
z3, z4) is a solution of equation (7), then (−z1, −z2, −z3, −z4) is also a solution
of the equation. Thus, when (m1, m2)= (0·03, −0·09), another S.B. solution, given
by (z1, z2, z3, z4)= (−0·0526, 0·0, −0·0958, 0·0), is expected from the numerical
computation by choosing an appropriate initial condition. Indeed, if the initial
point is chosen as (z1, z2, z3, z4)= (−0·01, 0·005, −0·01, −0·01), one would obtain
this S.B. solution and the solution curve could be obtained by rotating the
trajectory given in Figure 4 about the origin by 180°.

A stable limit cycle bifurcating from the static bifurcation solution (i.e., the 2nd
H.B. solution) is obtained at the parameter value (m1, m2)= (0·0, −0·18) with the
initial condition (z1, z2, z3, z4)= (0·01, 0·0, 0·01, 0·0), which is shown in Figure
5(a). It is noted from this figure that the trajectory starts from the right half of
the z1–z2 and z3–z4 planes but finally settles down in the left half of the two planes.
Further note from Figure 5(a) that, due to the symmetry of the system, one may
expect that a limit cycle can also exist in the right half of the z1–z2 and z3–z4 planes
if the initial condition is changed to (z1, z2, z3, z4)= (−0·01, 0·0, −0·01, 0·0). This
is shown in Figure 5(b). It should be noted that since the S.B. solution has both
z1 and z3 either positive or negative, so the 2nd H.B. solutions can only have the
two possibilities shown in Figure 5, and a combination of a positive (negative) z1

and negative (positive) z3 cannot exist. Indeed, choosing different initial conditions
in the numerical computation leads only to these two periodic solutions.

To end the section, let us discuss the physical explanation of the steady state
solutions obtained above. First, it can be seen from Figure 1 that the initial
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equilibrium zi =0 (i.e., u1 = u2 =0 indicating that the two rigid links are both in
the vertical direction) exists for all parameter values since both P1 and P2 are in
the vertical direction. This equilibrium solution is stable if the parameter values
of (m1, m2) are chosen from the stable region bounded by the critical lines L1 and
L2 (see Figure 2). When the parameter values are chosen from the region bounded
by the critical lines L1 and L3, then a small perturbation will cause the initial
equilibrium moving to a non-trivial stable equilibrium (S.B. solution), which is
either on the left or right side of the vertical position, depending upon the
perturbation. Further, when the parameters are varied so that the critical
boundary L3 is intersected, then the S.B. solution becomes unstable and a periodic
vibration is initiated. The center of the vibration is located either on the left or
on the right side of the vertical position, again depending on the initial
perturbation.

4. A SIMPLE ZERO AND A PAIR OF PURE IMAGINARY EIGENVALUES

In order to obtain a critical point at which the system has a simple zero and
a pair of pure imaginary eigenvalues, it is required that a4 =0 and
a3(a1a2 − a3)− a4a2

1 =0 (i.e., a1a2 = a3). Choosing the following parameter values:

f1 = f2 =
35
12

, f3 =
35
6

, f4 =−
37
12

, f5 =
91
12

, f6 = f7 =0, h1 =1, h2 =1,

(30)

Figure 5. Trajectory converges to the 2nd H.B. for (m1, m2)= (0·0, −0·18): starting from (a) (z1,
z2, z3, z4)= (0·01, 0·0, 0·01, 0·0); (b) (z1, z2, z3, z4)= (−0·01, 0·0, −0·01, 0·0).
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yields (see equations (10) and (11)) that a1 =7/2, a2 =2/3, a3 =7/3 and a4 =0.
Thus, the Jacobian (8) has the eigenvalues:

l1 =0, l2 =−
1
3

z6I, l3 =
1
3

z6I and l4 =−
7
2
. (31)

Similar to the case of a double zero eigenvalue, one may choose f4 and f5 (initially,
P1 and P2) as the parameters and use the parameter transformation

f4 =−
37
12

+ m1, f5 =
95
12

+ m2. (32)

Then, introducing the state variable transformation

z1 1 0 1 1 x1

z2 0
1
3

z6 0 −
7
2

x2

g
G

G

G

G

G

G

F

f

h
G

G

G

G

G

G
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G
G

G

G

G

G

G
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G
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G

G

G

G

G

L

l

g
G

G

G

G

G

G

F

f

h
G

G

G

G

G

G

J

j

z3 = −
5
2

−z6 −
1
2

−
32
17

x3 (33)

z4 0 −
1
6

z6 −2
112
17

x4

into equation (7) yields

dx1

dt
=078 m1 +

23
56

m21x1 +034 m1 +
27
28

m21x2

+z6012 m1 −
1
14

m21x3 +049
68

m1 +
103
238

m21x4 +Ng1,

dx2

dt
=−

1
3

z6x3 −0 609
2480

m1 −
297
2480

m21x1 −0 261
1240

m1 +
219
1240

m21x2

−z60 87
620

m1 −
129
620

m21x3 −0 4263
21 080

m1 −
117
2108

m21x4 +Ng2,

dx3

dt
=

1
3

z6x2 −z60 63
620

m1 −
1

155
m21x1 −z60 14

155
m2 +

27
310

m11x2

−0 54
155

m1 −
48
155

m21x3 −z60 441
5270

m1 +
5

527
m21x4 +Ng3,
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dx4

dt
=−

7
2

x4 −0119
310

m1 +
1141
2170

m21x1 −0 51
155

m1 +
663
1085

m21x2

−z60 34
155

m1 +
374
1085

m21x3 −0 49
155

m1 +
118
217

m21x4 +Ng4, (34)

where the non-linear functions Ngi are given in Appendix A. Now the Jacobian
matrix of equation (34) evaluated on the initial equilibrium solution xi =0 at the
critical point m1c = m2c =0 is in the Jordan canonical form

0 0 0 0

0 0
1
3

z6 0

G
G

G

G

G

G

G

K

k

G
G

G

G

G

G

G

L

l

J(xi =0) = 0 −
1
3

z6 0 0
. (35)

0 0 0 −
7
2

The local dynamic behaviour of the system in the vicinity of the critical point is
characterized by the critical variables x1, x2 and x3; and, based on equation (34),
the results and formulae given in reference [4] can be applied here. Introducing
a nearly identity non-linear transformation xi = yi + gi (yj ) (which are given by
equations (B1)–(B4) in Appendix B) and a cylindrical co-ordinate transformation

y1 = y, y2 = r cos u, y3 = r sin u, y4 = y4, (36)

yields the normal form of system (34) in the cylindrical co-ordinate system as
follows:

dy
dt

= y$078 m1 +
23
56

m21−
635
1152

y2 −
1891
192

r2%,
dr

dt
= r$0− 693

2480
m1 +

33
496

m21+
175 371
39 680

y2 −
230 477
39 680

r2%, (37)

and

du

dt
=

1
3

z6 $1+
99

1240
m1 −

111
248

m2 −
222 523
19 840

y2 −
373 219
19 840

r2%. (38)

4.1.  

The steady state solutions and their stability conditions can be found from
equation (37), while equation (38) determines the frequency of possible periodic
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solutions. Letting dy/dt=dr/dt=0 in equation (37) leads to the following steady
state solutions:

E.S.: y= r=0; (39)

S.B.: 8y2 =
144
4445

(49m1 +23m2),

r=0;
(40)

H.B.: 8y=0,

r2 =
528

230 477
(−21m1 +5m2);

(41)

2nd H.B.
2nd S.B. 7:

y2 =
358 125 264

2 136 112 261
m1 +

553 665 744
14 952 785 827

m2,

r2 =
169 733 088

2 136 112 261
m1 +

84 651 936
2 136 112 261

m2.
(42)

Here, the notation ‘‘2nd H.B.’’ denotes a dynamic bifurcation from the S.B.
solution (i.e., from a non-zero equilibrium to a periodic solution), while the
notation ‘‘2nd S.B.’’ represents a static bifurcation from the H.B. solution (i.e.,
a periodic solution having a static shift). It should be noted that these two
bifurcation solutions actually belong to the same family of limit cycles described
by equation (42).

The stability conditions can be determined from the Jacobian matrix of equation
(37), given by

J=

7
8

m1 +
23
56

m2 −
635
384

y2 −
1891
192

r2

175 371
19 840

yr

G
G

G

K

k

−
1891
96

yr

−
693
2480

m1 +
33
496

m2 +
175 371
39 680

y2 −
691 431
39 680

r2

. (43)G
G

G

L

l
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Figure 6. Bifurcation diagram for a simple zero and a pair of pure imaginary eigenvalue.

Evaluating equation (43) on the E.S. (39) shows that if the conditions

49m1 +23m2 Q 0 and −21m1 +5m2 Q 0 (44)

are satisfied, then the E.S. is stable. The region defined by equation (44) in the
parameter space is shown in Figure 6. Two critical lines which define the stability
boundaries of the E.S. can be obtained from equation (44), one of them is

L1: 49m1 +23m2 =0 (−21m1 +5m2 Q 0), (45)

from which non-trivial equilibrium solutions (S.B.) described by equation (40)
bifurcate from the initial equilibrium solution (39). The other critical line is defined
by

L2: 21m1 −5m2 =0 (49m1 +23m2 Q 0), (46)

along which the H.B. solution (41) may occur.
To find the stability condition of the S.B. solution (40), evaluate the Jacobian

(43) on equation (40) to obtain

−
1
28

(49m1 +23m2) 0

G
G

G

K

k

G
G

G

L

l
JS.B. = 0

3
787 400

(1 768 053m1 +881 791m2)
, (47)
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which implies that the S.B. solution is stable if

49m1 +23m2 q 0 and 1 768 053m1 +881 791m2 Q 0. (48)

The stability boundaries defined by equation (48) include the critical line L1 (which
has a slope −2·13) and another critical line

L3: 1 768 053m1 +881 791m2 =0, (49)

which has a slope −2·01, larger than the slope of L1 (i.e., the critical line L3 is
above the critical line L1). Thus, the S.B. solution (40) is stable in the region
bounded by the critical lines L1 and L3 (see Figure 6).

Next, the stability of the H.B. solution (41) is found by evaluating the Jacobian
(43) on equation (41) to yield

1
12 906 712

(17 408 867m1 +3 844 901m2) 0

G
G

G

K

k

G
G

G

L

l
JH.B. = 0 −

33
1240

(−21m1 +5m2)
,

(50)

which, in turn, shows when

17 408 867m1 +3 844 901m2 Q 0 and −21m1 +5m2 q 0, (51)

the H.B. solution is stable, and the frequency of the periodic solution (41) is given
by

v1c =
1
3

z6 $1−
29 477 943
35 723 935

m1 −
1 658 340
7 144 787

m2%. (52)

The second inequality of equation (51) is satisfied since the H.B. solution appears
on the left of the critical line L2. Therefore, the region for the H.B. solution to
be stable is bounded by the critical line L2 and another critical line defined by

L4: 17 408 867m1 +3 844 901m2 =0. (53)

When the parameter values are varied such that the critical boundary L3 is
intersected, the S.B. solution (40) becomes unstable and bifurcates into a family
of limit cycles (2nd H.B. solution). The solution of the family is given by equation
(42). Similarly, the H.B. solution (41) becomes unstable on the critical boundary
L4 from which a 2nd S.B. solution occurs, leading to another family of limit cycles
(42). The frequency of this family of limit cycles (2nd H.B./2nd S.B.) is given by

v2c =
1
3

z6 $1−
98 798 121
101 999 092

m1 −
94 213 173

7 139 930 644
m2%. (54)
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To investigate the stability of this family of limit cycles, evaluate the Jacobian
matrix (43) on solution (42) to obtain

−
635
576

y2 −
1891
96

yr

G
G

G

K

k

G
G

G

L

l

J2nd H.B. = 175 371
19 840

yr −
230 477
19 840

r2

. (55)

Then the stability conditions are found from the trace and determinant of the
Jacobian as

Tr=−
635
576

y2 −
230 477
19 840

r2 =−
366 816 939 692
331 097 400 455

m1 −
1 161 579 452 843
2 317 681 803 185

m2 Q 0,

Det=
2 136 112 261
11 427 840

y2r2

=
3

37 082 908 850 960
(17 68 053m1 +881 791m2)

× (17 408 867m1 +3 844 901m2)q 0. (56)

It is easy to see from equations (56) that as long as the 2nd H.B. solutions exist,
the two inequalities given in equations (56) are automatically satisfied. Therefore,
if a 2nd H.B. solution exists, it must be stable. It is noted that letting the
determinant equal zero leads to the two critical lines L3 and L4 which are actually
the boundaries of the region where the 2nd H.B. solutions exist, and therefore
stable (see Figure 6). It is also seen that letting trace equal zero results in a critical
line

L5: 2 567 718 577 844m1 +1 161 579 452 843m2 =0, (57)

from which a two-dimensional torus may occur. However, it is observed that
because this critical line (L5 having slope −2·21) is located below the critical line
L1 (with slope −2·13), so it is not possible to have bifurcations from the 2nd H.B.

Figure 7. Trajectory starting from (z1, z2, z3, z4)= (0·25, 0·1, 0·25, 0·0) converges to the E.S. when
(m1, m2)= (0·1, −0·3).
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Figure 8. Trajectory starting from (z1, z2, z3, z4)= (0·01, 0·0, 0·01, 0·0) converges to the S.B. when
(m1, m2)= (0·01, −0·0205).

solutions, leading to two-dimensional tori. The critical bifurcation lines are
illustrated in Figure 6.

4.2.  

Similar to the case of a double zero eigenvalue, different parameter values are
chosen from the different regions shown by the black circle dots in Figure 6 to
confirm the analytical results obtained in the previous subsection. When the
parameter values are chosen as (m1, m2)= (0·1, −0·3), which is located in the
region bounded by the critical lines L1 and L2, numerical results show that a
trajectory starting from a point near the origin converges to the origin
asymptotically. An example is shown in Figure 7, in which the initial condition
is (z1, z2, z3, z4)= (0·25, 0·1, 0·25, 0·0).

Since the region for the existence of a stable S.B. solution is very small, located
between the two critical lines L1 (with slope −2·13) and L3 (having slope −2·01),
it is very difficult to find suitable parameter values leading to a S.B. solution
without an analytic study. Figure 8 shows an example of stable S.B. solutions when
(m1, m2)= (0·01, −0·0205). The initial starting point of the trajectory is
(z1, z2, z3, z4)= (0·01, 0·0, 0·01, 0·0). It is interesting to note that the trajectory first
converges to the dark area and then moves along the z2-axis and z4-axis to the
non-zero equilibrium. The numerical S.B. solution for this case is (z1, z2, z3, z4) =
(0·0211, 0·0, −0·0519, 0·0). It should be noted that due to symmetry of the system
another S.B. solution, given by (z1, z2, z3, z4)= (−0·0211, 0·0, 0·0519, 0·0), can be
obtained numerically if the initial condition is chosen, say, as (z1, z2, z3, z4) =
(−0·01, 0·0, −0·01, 0·0).

The analytic S.B. solution for (m1, m2)= (0·1, −0·3) can be obtained through
equations (36) and (40) and the non-linear transformations (B1)–(B4) as

x1 =0·02448, x2 =−0·0002, x3 =−0·0001, x4 =0·0001. (58)

Then use the linear transformation (33) to find

z1 =0·0243, z2 =−0·0003, z3 =−0·0612, z4 =0·0003, (59)

which is close to the numerical result, showing that even the first order
approximate perturbation solution gives a good prediction.
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Figure 9. Trajectory starting from (z1, z2, z3, z4)= (0·1, 0·1, 0·1, 0·1) converges to the H.B. when
(m1, m2)= (−0·1, −0·1).

Next, choosing (m1, m2)= (−0·1, −0·1) yields a stable limit cycle shown in
Figure 9. The periodic trajectory of the H.B. solution starts from the initial point
(z1, z2, z3, z4)= (0·1, 0·1, 0·1, 0·1), and the amplitude of the limit cycles is about 0·1
for z1–z2 variables and 0·2 for z3–z4 variables. With the aid of the formulae (33),
(36), (41) and the non-linear transformations (B1)–(B4), one may find the
estimation of the approximate periodic solution at t=0 (remember that the
system is autonomous) as

z1 =−0·0117, z2 =−0·0171, z3 =−0·1073, z4 =0·0342. (60)

Thus, zz2
1 + z2

2 =0·0207 and zz2
3 + z2

4 =0·1126, which is not in a good agreement
with the numerical results, but still gives a good qualitative prediction.

Figure 10. 2nd H.B. solutions for: (a) (m1, m2)= (0·02, −0·03); (b) (m1, m2)= (0·0, 0·05).
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Two numerical secondary bifurcation solutions (2nd H.B. and 2nd S.B.
solutions) are obtained by choosing (m1, m2)= (0·02, −0·03) with the initial
condition (z1, z2, z3, z4)= (0·15, 0·04, 0·25, 0·08) and (m1, m2)= (0·00, 0·05) with
the initial condition (z1, z2, z3, z4)= (0·1, 0·05, 0·1, 0·07); the former is close to the
critical line L3 while the latter is near the critical line L4. These 2nd H.B./2nd S.B.
solutions are depicted in Figure 10. It should be noted that the center of the H.B.
solution (see Figure 9) is located at the origin, indicating that the limit cycle
bifurcates from the initial equilibrium. However, the center of the periodic
solutions shown in Figure 10 is located at a non-zero position, implying that it
is either a 2nd H.B. solution bifurcating from the S.B. solution (40) or a 2nd S.B.
solution bifurcating from the H.B. solution (41). The solution of this family of
limit cycles is given by equation (42) in which y can take both positive and negative
signs, again implying that another 2nd H.B. solution exists for the same parameter
values and is symmetric to the one given in Figure 10 about the origin. It should
be noted from Figure 10 that the transient part of the trajectory has been omitted
for a clear view of the steady state solutions.

Again from the analytic results, one may find the following estimations for the
2nd H.B./2nd S.B. solutions:

z1 =0·0463, z2 =0·0151 when z2 reaches its maximum,

z3 =−0·1262, z4 =−0·0468 when z4 reaches its maximum, (61)

for (m1, m2)= (0·02, −0·03); and

z1 =0·0306, z2 =0·0253 when z2 reaches its maximum,

z3 =−0·0892, z4 =−0·1221 when z4 reaches its maximum, (62)

for (m1, m2)= (0·00, 0·05). These results show a prediction close to the numerical
results.

The physical explanation of this case is similar to the case of a double zero
eigenvalue studied in the previous section. However, here it indicates a possibility
of existence of a Hopf bifurcation, which gives a vibration with its center located
on the vertical line u1 = u2 =0 (i.e., zi =0).

5. TWO PAIRS OF PURE IMAGINARY EIGENVALUES

In this case, it is required that a1 = a3 =0 at a critical point. If the values of
the parameters defined in equation (6) are chosen as

f1 =
4
7

, f2 =
407
56

, f5 =
1
56

, f4 =
535
28

, f5 = f6 =0, f7 =−1, h1 = h2 =0,

(63)

then, it is easy to find from equations (10) and (11) that a1 = a3 =0, a2 =3 and
a4 =2, which indicates that the Jacobian (8) has two pairs of pure imaginary
eigenvalues:

l1,2 =2I and l3,4 =2z2I (I2 =−1). (64)
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Now, choosing h1 and h2 (initially, d1 and d2) as the parameters, using the
parameter transformation

h1 = m1, h2 = m2, (65)

and then introducing the state variable transformation

z1
16
21

0
2
7

z2 0 x1

z2 0
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0
4
7
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G
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j

z3
=

1 0
1
2

z2 0 x3
(66)

z4 0 1 0 1 x4

into equation (7) yields

dx1

dt
= x2,

dx2

dt
=−x1 −022

7
m1 −

75
28

m21x2 −033
14

m1 −
135
28

m21x4 +Nh1,

dx3

dt
=z2x4,

dx4

dt
=−z2x3 +074

21
m1 −

265
84

m21x2 +037
14

m1 −
159
28

m21x4 +Nh2, (67)

where the non-linear functions Nhi are listed in Appendix A. With the aid of
normal form theory, similarly one may use a non-linear transformation
xi = yi + gi ( yj ) (given by equations (B5)–(B8) in Appendix B) and introduce a
transformation

y1 = r1 cos u1, y2 = r1 sin u1, y3 = r2 cos u2, y4 = r2 sin u2, (68)

to obtain the normal form in a polar co-ordinate system:

dr1

dt
= r1$−11

7
m1 +

75
56

m2 −
625

10 976
r2

1 −
2025
5488

r2
2%,

dr2

dt
= r2$−37

28
m1 −

159
56

m2 +
1325
5488

r2
1 +

4293
10 976

r2
2%; (69)
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and

du1

dt
=1−

6 493 901
22 127 616

r2
1 −

1 423 069
2 458 624

r2
2 ,

du2

dt
=z2 $1+

14 046 397
22 127 616

r2
1 +

2 975 501
9 834 496

r2
2%. (70)

5.1.  

On the basis of equation (69), the steady state solutions are obtained by setting
dr1/dt=dr2/dt=0 as follows:

(1) The initial equilibrium solution (E.S.):

r1 = r2 =0 (i.e., xi =0). (71)

(2) Hopf bifurcation solution (H.B.(I) with frequency v1):

r2
1 =

10 976
625 0−11

7
m1 +

75
56

m21, r2 =0,

v1 =1+
71 432 911
8 820 000

m1 −
6 493 901
940 800

m2. (72)

(3) Hopf bifurcation solution (H.B.(II) with frequency v2):

r1 =0, r2
2 =−

10 976
4293 037

28
m1 −

159
56

m21,

v2 =z2 $1−
110 093 537
107 702 784

m1 +
2 975 501
1 354 752

m2%. (73)

(4) Quasi-periodic solution (2-D tori with frequencies v1, v2):

r2
1 =

188 944
99 375

m1 +
196
25

m2, r2
2 =−

1 465 688
321 975

m1 +
196
81

m2.

v1 =1+
104 850 832 237
50 485 680 000

m1 −
47 010 917
12 700 800

m2,

v2 =z2 $1−
34 401 875 231
201 942 720 000

m1 +
580 057 817
101 606 400

m2%. (74)
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The Jacobian matrix of equation (69) takes the form

G
G

G

K

k

J=
−

11
7

m1 +
75
56

m2 −
1875

10 976
r2

1 −
2025
5488

r2
2

1325
2744

r1r2

G
G

G

L

l

−
2025
2744

r1r2

37
28

m1 −
159
56

m2 +
1325
5488

r2
1 +

12 879
10 976

r2
2

, (75)

which can be used for the stability analysis of the above steady state solutions.
Evaluating the Jacobian (75) on the fundamental equilibrium solution (71) results
in the stable region for the E.S. as

−
11
7

m1 +
75
56

m2 Q 0 and
37
28

m1 −
159
56

m2 Q 0, (76)

which, in turn, gives two critical lines. One of these is described by

L1: 88m1 −75m2 =0 (74m1 −159m2 Q 0), (77)

which leads to a family of limit cycles bifurcating from the E.S. with the
approximate solution H.B.(I) given in equation (72). The second critical line is

L2: 74m1 −159m2 =0 (88m1 −75m2 q 0), (78)

from which another family of limit cycles, given by H.B.(II) solution (73), may
occur.

Next, evaluating the Jacobian matrix (75) on the Hopf bifurcation solution (72)
results in the stability conditions

−7478m1 +3975m2 Q 0 (88m1 −75m2 Q 0) (79)

for the H.B.(I) solution. The inequality given in equation (79) implies another
critical line

L3: 7478m1 −3975m2 =0 (74m1 −159m2 q 0), (80)

along which a secondary Hopf bifurcation with frequency v2 takes place from the
first bifurcating limit cycle H.B.(I), leading to a 2-D torus described by solution
(74).

Similarly, a set of stability conditions associated with the H.B.(II) solution (73)
can be obtained by evaluating the Jacobian (75) of this solution. Thus, for the
H.B.(II) solution to be stable, the inequalities

−964m1 −3975m2 Q 0 and 74m1 −159m2 q 0 (81)
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Figure 11. Bifurcation diagram for two pairs of pure imaginary eigenvalue.

must be satisfied. The first inequality in equation (81) is always satisfied if m1 and
m2 are positive (positive damping as assumed). However, it can be seen from
equation (73) that the existence of the H.B.(II) solution requires 74m1 −159m2 Q 0
which violates the second stability condition given in equation (81). Thus, the
H.B.(II) solution (73) is unstable.

To find the stability of the family of 2-D tori expressed by equation (74),
evaluating the Jacobian (75) on equation (74) yields

G
G

G

K

k

G
G

G

L

l

J2−D tori =
−

625
5488

r2
1

1325
2744

r1r2

−
2025
2744

r1r2

4293
5488

r2
2

. (82)

The stability conditions are then obtained from the trace and determinant of the
Jacobian as

Tr=−
625
5488

r2
1 +

4293
5488

r2
2 =−

30 031
7950

m1 + m2 Q 0,

Det=
8 006 445
30 118 144

r2
1r

2
2 =−

1
3 116 400

(964m1 +3975m2)(7478m1 −3975m2)q 0.

(83)
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Figure 12. Trajectory starting from (z1, z2, z3, z4)= (0·01, 0·01, −0·01, 0·01) converges to the E.S.
when (m1, m2)= (0·05, 0·04).

It is easy to see that the second inequality in equation (83) is automatically satisfied
as long as a solution (r1, r2) exists for a motion on the 2-D torus. In fact, the
existence of a 2-D torus, found from equation (74), requires 7478m1 −3975m2 Q 0,
which implies the critical boundary L3. The first inequality in equation (83), on
the other hand, leads to a critical line:

L4: 30 031m1 −7950m2 =0, (84)

Figure 13. H.B. solutions for (m1, m2)= (0·05, 0·095): starting from (a) (z1, z2, z3, z4)= (0·3, 0·0,
0·3, 0·0); (b) (z1, z2, z3, z4)= (0·1, 0·0, 0·0, 0·1).
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Figure 14. The Poincare map of a 2-D torus projected onto the plane z3 =0, z2 e 0 for
(m1, m2)= (0·005, 0·015).

from which a quasi-periodic solution (2-D torus) loses stability and bifurcates into
a motion on a 3-D torus (v1, v2, v3); the third frequency of the 3-D torus, v3,
is given by

v3 =X 8 049 375
15 059 072

r1r2 =
1

z3 116 400
z(964m1 +3975m2)(3975m2 −7478m1).

(85)

The critical bifurcation lines are illustrated in Figure 11.

5.2.  

By choosing a point in the parameter space as (m1, m2)= (0·05, 0·04), which is
located in the stable region for the E.S., one can find a numerical solution, as
shown in Figure 12. The trajectory starting from the initial point
(z1, z2, z3, z4)= (0·01, 0·01, −0·01, 0·01) converges to the origin—the E.S. of the
system.

When (m1, m2)= (0·075, 0·095), a Hopf bifurcation solution H.B.(I) is obtained,
as shown in Figure 13, where two initial points are chosen as
(z1, z2, z3, z4)= (0·3, 0·0, 0·3, 0·0) and (z1, z2, z3, z4)= (0·1, 0·0, 0·0, 0·1). Both
trajectories converge to a limit cycle, one from the outside of the limit cycle, the
other from inside the limit cycle. From equation (72) one can find the amplitude
of the periodic solution as r1 =0·9244 with frequency v1 =0·7492. Thus, the first
order approximation of the H.B.(I) solution may be obtained using the general
non-linear transformation given in reference [5] as

x1 =0·9244 cos (0·7429t)+0·0454 cos 3(0·7429t)+0·0037 sin 3(0·7429t),

x2 =−0·6923 sin (0·7429t)+0·0112 cos 3(0·7429t)−0·1353 sin 3(0·7429t),

x3 =−0·5378z2 cos (0·7429t)+0·0084z2 sin (0·7429t)

−0·0607z2 cos 3(0·7429t)−0·0050z2 sin 3(0·7429t),

x4 =0·0084 cos (0·7429t)+0·5378 sin (0·7429t)

−0·0151 cos 3(0·7429t)+0·1820 sin 3(0·7429t). (86)
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Figure 15. A two-dimensional torus in the four-dimensional state space.

To estimate the amplitude of the periodic solution from equation (86) in terms of
the original variables zi’s, letting t=0 and using the transformation (66) yields the
first order approximate solution for zi :

z1 =0·3969, z2 =0·0047, z3 =0·3713, z4 =0·0045. (87)

This shows that the amplitude of the approximate periodic solution obtained from
the analytic formula is about 0·4, which is almost twice that of the numerical
results. This large error suggests that high order approximations are needed to
achieve a more accurate approximate prediction.

Figure 16. The Poincare map of a 3-D torus projected onto the plane z3 =0, z2 e 0 for
(m1, m2)= (0·005, 0·03).
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A numerical solution for a quasi-periodic motion on a 2-D torus is obtained
by choosing the parameter values as (m1, m2)= (0·005, 0·015), which is located in
the region bounded by the critical lines L1 and L3. In order to show this 2-D torus,
the trajectory zi in the four-dimensional state space is projected onto the half plane
z3 =0, z2 e 0 to obtain a Poincare map, as shown in Figure 14. Since the Poincare
map is a dense periodic orbit, so the solution is indeed a quasi-periodic motion
on a 2-D torus. It should be noted that due to symmetry of the system, another
Poincare map exists, which is symmetric to the one shown in Figure 14 about the
z1-axis, on the half plane z3 =0, z2 E 0. One may image that the 2-D torus passes
the two ellipses (see Figure 15).

The two amplitudes of the quasi-periodic motions corresponding to the
parameter values (m1, m2)= (0·005, 0·015) can be estimated from equation (74) as
r1 =0·3565, r2 =0·1164. Similar to the above Hopf bifurcation solution, one may
let t=0, and use the non-linear transformation [5] to obtain the approximate
solution

x1 =0·3442, x2 =0·0034, x3 =0·0543, x4 =−0·0010. (88)

Then applying the linear transformation (66) yields

z1 =0·2842, z2 =0·0021, z3 =0·3826, z4 =0·0025 (89)

which gives zz2
1 + z2

2 =0·2842 and zz2
3 + z2

4 =0·3826. The amplitudes of the
quasi-periodic motion found from the numerical results are zz2

1 + z2
2 =0·3571 and

zz2
3 + z2

4 =0·3675. This shows that the first order analytic approximate solution
gives a reasonable prediction, at least from the viewpoint of qualitative behaviour.

Finally, if the parameter values are chosen as (m1, m2)= (0·005, 0·03), which is
located in the region bounded by the critical line L4 and the positive m2-axis, where
quasi-periodic motions on a 3-D torus may arise, as indicated by the analytic study
given in the previous subsection. The numerical result is shown in Figure 16, which
is again a projection of the trajectory onto the half plane z3 =0, z2 e 0. It can be
seen from this figure that the Poincare map now shows a dense 2-D torus, implying
that the quasi-periodic motion is indeed on a 3-D torus embedded in the
four-dimensional state space.

The quasi-periodic motion on a 2-D torus can be imaged as a combined motion
via the superposition of a small periodic motion (v2) on the main periodic
vibration (v1) which has its center at the origin zi =0. Then the quasi-periodic
motion on a 3-D torus can be viewed as a motion by adding a third small periodic
motion (v3) to the 2-D quasi-periodic motion. It is expected that these complex
motions may be observed from a real experiment in a laboratory.

6. 1:1 RESONANCE

The non-resonant case for the two pairs of pure imaginary eigenvalues has been
studied in detail in the previous section; we now turn to the primary 1:1 resonant
case. Suppose that the Jacobian (8) has two repeated pairs of pure imaginary
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eigenvalues l1,2 = l3,4 =2i. This means that a1 = a3 =0, a2 =2 and a4 =1. One
choice of the parameter values satisfying these conditions is

f1 =10, f2 =2, f3 =5, f4 =−6, f5 =8, f6 =−10,

f7 =30, h1 = h2 =0. (90)

Again choosing h1 and h2 as the parameters, and then using the parameter
transformation h1 = m1, h2 = m2, and the state variable transformation

z1 0 1 0 0 x1

z2 −1 0 0 1 x2g
G

G

F

f

h
G

G

J

j

G
G

G

K

k

G
G

G

L

l

g
G

G

F

f

h
G

G

J

j
z3

=
0 1 −2 0 x3

(91)

z4 −1 0 0 −1 x4

yields the system

dx1

dt
= x2 + x3 − m2x4 −

8
3

x3
2 +10x3

3 −120x3
4

−x2
1x3 +11x2

2x3 −16x2x2
3 − x3x2

4 +2x1x3x4,

dx2

dt
=−x1 + x4,

dx3

dt
= x4,

dx4

dt
=−x3 +

1
2

m1x1 −
1
2

m1x4 −3m2x4 −5x3
1 −

10
3

x3
2 +

62
3

x3
3 −355x3

4

−3x2
1x3 +15x2

1x4 +17x2
2x3 −28x2x2

3 −15x1x2
4 −3x3x2

4 +2x1x3x4,

(92)

with the Jacobian matrix evaluated at the critical point m1 = m2 =0 in the Jordan
canonical form

0 1 1 0

−1 0 0 1
G
G

G

K

k

G
G

G

L

l

J=
0 0 0 1

, (93)

0 0 −1 0

which is a so called non-semisimple form. By using a non-linear transformation
xi = yi + gi (yj ), which is given by equations (B9)–(B12) in Appendix B, and the
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Figure 17. Bifurcation diagram for the 1:1 resonant case.

transformation (67), one may find the normal form as follows:

dr1

dt
= r2 cos (u2 − u1),

dr2

dt
=−

1
4

m1r2 −
3
2

m2r2 −
1
4

m1r1 sin (u2 − u1)+15r2
1r2 +30r1r

2
2 sin (u2 − u1)

−80r1r
2
2 cos (u2 − u1)+

15
2

r3
1 sin (u2 − u1)−5r3

1 cos (u2 − u1)

+6r2
1r2 sin 2(u2 − u1)−

15
2

r2
1r2 cos 2(u2 − u1),

r1
du1

dt
= r1 + r2 sin (u2 − u1),

r2
du2

dt
= r2 −

1
4

m1r1 cos (u2 − u1)−22r2
1r2 +80r1r

2
2 sin (u2 − u1)

+30r1r
2
2 cos (u2 − u1)

+
15
2

r3
1 cos (u2 − u1)+5r3

1 sin (u2 − u1)

+
15
2

r2
1r2 sin 2(u2 − u1)+6r2

1r2 cos 2(u2 − u1). (94)
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6.1.  

It is seen from equation (94) that only three of the four equations are
independent. So f= u2 − u1, then we have

dr1

dt
= r2 cos f,

dr2

dt
=−

1
4

m1r2 −
3
2

m2r2 −
1
4

m1r1 sin f+15r2
1r2 +30r1r

2
2 sin f−80r1r

2
2 cos f

+
15
2

r3
1 sin f−5r3

1 cos f+6r2
1r2 sin 2f−

15
2

r2
1r2 cos 2f,

df

dt
=−

1
4

m1
r1

r2
cos f−

r2

r1
sin f−22r2

1 +
15
2

r2
1 sin 2f−10r2

1 cos 2f

+30r1r2 cos f+80r1r2 sin f+
15
2

r3
1

r2
cos f+5

r3
1

r2
sin f. (95)

Note that, unlike the non-resonant case, although the trivial solution r1 = r2 =0
(which represents the initial equilibrium xi =0 or zi =0) can be obtained from
equation (94), its stability cannot be determined from equation (94) or equation
(95). However, based on equation (92), one may use linearization to find the
characteristic polynomial evaluated on the initial equilibrium, given by

P(l)= l4 +012 m1 +3m21l3 +02+
1
2

m1m21l2 +03m2 −
1
2

m11l+1. (96)

Using the stability conditions given in equation (11) and noticing that m1 e 0,
m2 e 0 yields

m2m
2
1 +8m1 −36m3

2 Q 0 (97)

Figure 18. Trajectory starting from (z1, z2, z3, z4)= (0·06, 0·06, 0·06, 0·06) converges to the E.S.
when (m1, m2)= (0·03, 0·2).
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Figure 19. Phase-locked periodic solutions: (a) starting from (z1, z2, z3, z4)= (0·02, 0·02, 0·02,
0·02).

which, in turn, results in

0E m1 Q
4
m2 $−1+X1+

9
4

m4
2%1 9

2
m3

2. (98)

Thus, when 0Q m1 Q (9/2)m3
2, the initial equilibrium xi =0 is stable. When the

parameters m1 and m2 are varied such that the critical boundary

L: m1 =
9
2

m3
2 (99)

is reached, the initial equilibrium becomes unstable and phase-locked periodic
solutions bifurcate from the boundary. The bifurcation diagram is given in Figure
17.

Letting dr1/dt=dr2/dt=df/dt=0 yields the algebraic equations which can
be used for solving possible phase-locked periodic solutions. No closed form
solutions can be obtained from these non-linear algebraic equations. However, we
may find all the possible periodic solutions by the following procedure. First, note
from the first of equations (95) that dr1/dt=0 leads to cos f=0 (since r2 $ 0)
which yields two possibilities: f=21

2p (for −pQfE p), or sin f=21.
Substituting f= p/2 into the remaining two algebraic equations gives

m1r1 + (m1 +6m2)r2 −30r3
1 −90r2

1r2 −120r1r
2
2 =0,

r2
2 −5r4

1 +28r3
1r2 −80r2

1r
2
2 =0, (100)
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Figure 20(a–e).
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Figure 20(f).

Figure 20. Period-doubling to chaos for (m1, m2)= (0·1, 0·1) when V=1·0 with initial condition
(z1, z2, z3, z4)= (−0·05, 0·0, −0·05, 0·0); (a) a=1·05, period-1; (b) a=1·08, period-2; (c) a=1·095,
period-4; (d) a=1·0989, period-8; (e) a=1·0999, period-16; (f) a=1·109, chaos.

from which one may eliminate (e.g., by using a symbolic computation language
Maple) variable r2 to obtain a polynomial for r1:

16 862 400r8
1 −224 100r6

1 +900r4
1 −60m1r

2
1 + m2

1 =0 (101)

in which all the coefficients have been taken the leading term (first order
approximation) and then r2 is given by

r2 =−
r1(1800r4

1 −30r2
1 + m1)

10 560r4
1 −90r2

1 + m1 +6m2
. (102)

Now, given the values of m1 and m2, equation (101) can be used to numerically find
all possible (stable and unstable) periodic solutions (r1 q 0) and then r2(q0) is
determined from equation (102).

The solutions for the case of f=−p/2 can be similarly found. The stability
conditions for these phase-locked periodic solutions are straightforwardly
determined from the Jacobian matrix of equation (95).

6.2.  

By choosing (m1, m2)= (0·03, 0·2), which represents a point in the parameter
space (see the black circle dots in Figure 17) located in the stable region for
the E.S., one can use time integration to find a numerical solution shown in
Figure 18. The trajectory starting from the initial point (z1, z2, z3, z4) =
(0·06, 0·06, 0·06,0·06) converges to the origin—the initial equilibrium of the
system.

If the parameters are chosen as m1 = m2 =0·2, then use the analytic formulas
given in section 6.1 and a simple approach for solving polynomials to obtain the
following solutions:

r1 =0·0606, r2 =−0·0057; r1 =0·1112, r2 =−0·0061; for f=+p/2

r1 =0·0606, r2 =0·0057; r1 =0·1112, r2 =0·0061; for f=−p/2.

(103)
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Taking the positive value yields two solutions when f=−p/2. Next substituting
the two solutions into the Jacobian matrix of equation (95) shows that the first
solution is stable while the second solution is unstable. Thus, we have the following
results:

solution r1 =0·0606, r2 =0·0057, f=−p/2 is stable;

solution r1 =0·1112, r2 =0·0061, f=−p/2 is unstable.

(104)

Similarly, apply the linear transformation (91) and the non-linear transformation
given by equations (B9)–(B12) in Appendix B to obtain

z1 =0·0038, z2 =−0·0573, z3 =0·0108, z4 =−0·0697 (105)

which yields the analytic prediction zz2
1 + z2

2 =0·0574 and zz2
3 + z2

4 =0·0705.
By a time integration scheme, one can find the numerical solution for

m1 = m2 =0·2, shown in Figure 19 from which the amplitude of the phase-locked
periodic solution can be estimated as

zz2
1 + z2

2 =0·065, zz2
3 + z2

4 =0·080 (106)

which closes to the analytic prediction.
Furthermore, by numerically exploring the phase-locked periodic solutions

using equations (95), (101) and (102), we have found that one of the two solutions
is always unstable in the region bounded by the critical line L and the positive
m1-axis. the other periodic solution is stable in the region except for the small
region bounded by the dotted curve.

7. CHAOS

Finally, in this section, we shall, based on the numerical approach, investigate
the possibility of system (7) having chaotic motions. Here, the force P2 (i.e., f5)
is modified from a constant to a periodic function

f5 =2+ a cos (Vt), (107)

so that the system now becomes a non-autonomous system. Furthermore, the
system parameters are chosen as

f1 =4, f2 =1, f3 =2, f4 =0, f6 = f7 =0, h1 =0, h2 =0,

(108)

such that the linearized system without the forcing term has two repeated pairs
of purely imaginary eigenvalues l1,2 = l3,4 =2i, evaluated at the critical point
h1 = h2 =0.

Based on the original differential equation (7), a time integration scheme has
been employed to find double-periodic motions leading to chaos—a well-known
chaos scenario. The cascading bifurcations happens when the external frequency,
V, is chosen close to 1 (here it is 1·05) and increasing the amplitude of the forcing
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term, a, from 1. When aQ 1·08, the numerical result shows a stable period-1 motion
(see Figure 20(a)). When a=1·08, the period-1 motion becomes unstable and
bifurcates into a period-2 motion (Figure 20(b)), which is stable until a equals 1·095
at which the period-2 motion becomes unstable and bifurcates into a period-4
motion (Figure 20(c)). This cascading bifurcation continues to occur at a=1·0989
leading to period-8 motion (Figure 20(d)) and at a=1·0999 to period-16 motion
(Figure 20(e)). Finally, the motion becomes chaotic at a=1·109, which is shown
in Figure 20(f).

It should be noted that the trajectories shown in Figure 20 are actually the
projections of the trajectories in the four-dimensional state space onto the z1–z2 and
z3–z4 sub-spaces. Also note that the transient trajectories starting from the initial
point (z1, z2, z3, z4)= (0·05, 0·0, 0·05, 0·0) have been omitted in Figure 20 in order
to give a clear visualization. It is seen from Figure 20(f) that the trajectories are
symmetric with respect to the origin. This is because if we replace zi by −zi

in equation (7), the system does not change. In fact, this also happens to all
parts (a)–(e) in Figure 20—if the initial point is chosen as (z1, z2, z3, z4)=
(−0·05, 0·0, −0·05, 0·0), then another period-doubling cascading bifurcation
leading to chaos would be obtained. The chaotic motion travels along the seemingly
random orbits, but bounded and never repeated.

8. CONCLUSIONS

A simple physical system—double pendulum has been studied in detail to show
a rich dynamic behaviour of the system in the vicinity of a number of compound
critical points. Closed form solutions have been obtained, via bifurcation analysis,
for periodic and quasi-periodic solutions. The stability conditions for the steady
state solutions are also given explicitly in terms of the system parameters. Critical
stability boundaries along which incipient, secondary and tertiary bifurcations
leading to periodic solutions, quasi-periodic motions on 2-D and 3-D tori are also
explicitly obtained. All the derivations are simple and straightforward with the aid
of normal form theory. Numerical computations have been performed for each of
the bifurcation cases and shown that all numerical solutions agree with the analytic
predictions, at least qualitatively. It has been found that an analytic approach can
provide a general picture of dynamic behaviour of a non-linear system in the vicinity
of a critical point and then numerical computations can be purposely performed to
get more accurate results. This suggests that it is necessary to use both analytical
and numerical methods for the study of non-linear systems. A numerical approach
has also been applied to find cascading bifurcations leading to chaos for certain
parameter values.
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APPENDIX A: NON-LINEAR FUNCTIONS

The non-linear functions Nfi , i=1, 2, 3, 4 in equation (16) are given below.

Nf1 =
330 733
33 957

x3
1 +

275 353 739
69 883 506

x3
2 −

145 693
32 076

x3
3 −

237 755
396

x3
4

+
6 593 768
237 699

x2
1x2 −

377 075
14 553

x2
1x3 −

74 260
1617

x2
1x4 +

33 961 273
1 663 893

x1x2
2

−
7 014 439
259 308

x2
2x3 −

2 155 859
9702

x2
2x4 +

37 343
2079

x1x2
3

+
1 832 321
87 318

x2x2
3 −

25 403
1188

x2
3x4 −

20 296
77

x1x2
4

−
52 650 701
950 796

x2x2
4 +

50 095
1188

x3x2
4 −

5 861 071
101 871

x1x2x3

−
2 748 695
33 957

x1x2x4 +
62 852
2079

x1x3x4 −
34 570
14 553

x2x3x4, (A1)

Nf2 =−
5108
1617

x3
1 −

1 423 276
1 663 893

x3
2 +

3955
2673

x3
3 +

1519
6

x3
4 −

103 856
11 319

x2
1x2 +

6080
693

x2
1x3

+
1566
77

x2
1x4 −

489 232
79 233

x1x2
2 +

333 026
33 957

x2
2x3 +

534 139
22 638

x2
2x4 −

194
33

x1x2
3

−
15 475
2079

x2x2
3 +

2009
198

x2
3x4 +

1238
11

x1x2
4 +

20 743
231

x2x2
4 −

203
9

x3x2
4

+
100 300
4851

x1x2x3 +
55 406
1617

x1x2x4 −
1502
99

x1x3x4 +
355
693

x2x3x4, (A2)

Nf3 =
4769
539

x3
1 +

1 505 233
369 754

x3
2 −

1631
396

x3
3 −

21 007
44

x3
4 +

94 296
3773

x2
1x2 −

12 455
539

x2
1x3

−
1734
49

x2
1x4 +

503 385
26 411

x1x2
2 −

2 468 993
105 644

x2
2x3 −

4 621 917
105 644

x2
2x4 +

3755
231

x1x2
3

+
59 251
3234

x2x2
3 −

2071
132

x2
3x4 −

16 014
77

x1x2
4 −

195 375
1078

x2x2
4 +

1231
44

x3x2
4

−
188 351
3773

x1x2x3 −
242 283
3773

x1x2x4 +
1634
77

x1x3x4 −
1325
539

x2x3x4, (A3)
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Nf4 =−
38 491
33 957

x3
1 −

34 456 445
69 883 506

x3
2 +

16 939
32 076

x3
3 +

25 781
396

x3
4 −

69 448
21 609

x2
1x2

+
43 445
14 553

x2
1x3 +

1132
231

x2
1x4 −

4 012 927
1 663 893

x1x2
2 +

8 739 083
2 852 388

x2
2x3

+
812 885
135 828

x2
2x4 −

4337
2079

x1x2
3 −

18 973
7938

x2x2
3 +

2645
1188

x2
3x4 +

2192
77

x1x2
4

+
236 861
9702

x2x2
4 −

4969
1188

x3x2
4 +

665 353
101 871

x1x2x3 +
42 527
4851

x1x2x4

−
6404
2079

x1x3x4 +
4330

14 553
x2x3x4. (A4)

The non-linear functions Ngi , i=1, 2, 3, 4 in equation (34) are given by

Ng1 =−
635
1152

x3
1 −

146 345
1008

x3
2 +

703
63

z6x3
3 +

99 723 742
44 217

x3
4 +

889
192

x2
1x2

−
25
16

z6x2
1x3 −

54 133
1632

x2
1x4 −

739
96

x1x2
2 +

8315
84

z6x2
2x3

+
427 495

408
x4x2

2 −12x1x2
3 −

872
7

x2x2
3 +

12 881
34

x4x2
3 −

4 995 415
55 488

x1x2
4

−
73 595 179

27 744
x2x2

4 +
9 172 643
13 872

z6x3x2
4 +

113
12

z6x1x2x3 −
679
408

x1x2x4

−
2129
51

z6x1x3x4 −
26 513

51
z6x2x3x4, (A5)

Ng2 =
52 507
23 808

x3
1 −

9547
480

x3
2 +

12 883
930

z6x3
3 +

2 967 447 847
9 138 180

x3
4 −

24 829
19 840

x2
1x2

+
6895
992

z6x2
1x3 +

1 078 693
168 640

x2
1x4 +

12 047
9920

x1x2
2 +

4311
248

z6x2
2x3

+
6 536 089
42 160

x2
2x4 +

6251
155

x1x2
3 −

4242
155

x2x2
3 +

150 605
2108

x2
3x4

+
70 804 699
5 733 760

x1x2
4
−

1 196 764 961
2 866 880

x2x2
4 +

135 359 273
1 433 440

z6x3x2
4

−
1169
1240

z6x1x2x3 −
508 193
42 160

x1x2x4 +
29 638
2635

z6x1x3x4

−
468 349
5270

z6x2x3x4, (A6)



  731

Ng3 =
19 159
35 712

z6x3
1 +

2081
720

z6x3
2 +

2434
155

x3
3 −

4 525 321 843
109 658 160

z6x3
4

−
15 673
29 760

z6x2
1x2 +

5005
496

x2
1x3

+
1 609 307
505 920

z6x2
1x4 +

3353
4960

z6x1x2
2 −

811
124

x2
2x3 −

767 823
42 160

z6x2
2x4

+
18 431
1860

z6x1x2
3 +

33
310

z6x2x2
3 −

9611
3162

z6x2
3x4

+
32 161 199
4 300 320

z6x1x2
4 +

86 775 059
2 150 160

z6x2x2
4 −

13 200 117
179 180

x3x2
4

−
2611
620

x1x2x3 −
340 417
126 480

z6x1x2x4 +
17 633
620

x1x3x4

+
198 653
5270

x2x3x4, (A7)

Ng4 =−
34 459
8928

x3
1 +

233 053
1260

x3
2 −

379 508
9765

z6x3
3 −

2 342 159 033
806 310

x3
4

−
15 827
7440

x2
1x2 −

765
62

x2
1x3 +

37 901
1860

x2
1x4 +

19 601
3720

x1x2
2

−
87 074
651

z6x2
2x3 −

631 397
465

x2
2x4 −

10 642
155

x1x2
3

+
194 548
1085

x2x2
3 −

16 174
31

x2
3x4 +

8 262 871
126 480

x1x2
4 +

220 552 171
63 240

x2x2
4

−
26 879 963

31 620
z6x3x2

4 −
3502
465

z6x1x2x3 +
11 984
465

x1x2x4

+
8951
465

z6x1x3x4 +
324 386

465
z6x2x3x4. (A8)

The non-linear functions Nhi , i=1, 2 in equation (67) are

Nh1 =
351 167

2 765 952
x3

1 −
625
4116

x3
2 +

286 595
1 229 312

z2x3
3 −

1215
1372

x3
4 +

753 923
1 843 968

z2x2
1x3

+
48 575
24 696

x1x2
2 +

9715
5488

z2x2
2x3 −

1125
1372

x2
2x4 +

478 909
614 656

x1x2
3 +

4215
2744

x1x2
4

−
2025
1372

x2x2
4 +

7587
5488

z2x3x2
4 +

14 165
4166

x1x2x4 +
8499
2744

z2x2x3x4, (A9)



.   . 732

Nh2 =−
3 568 499
24 893 568

x3
1 +

6625
37 044

x3
2 −

1 015 277
3 687 936

z2x3
3 +

1431
1372

x3
4

−
2 628 781
5 531 904

z2x2
1x3 −

56 635
24 696

x1x2
2 −

11 327
5488

z2x2
2x3 +

1325
1372

x2
2x4

−
562 705
614 656

x1x2
3 −

14 585
8232

x1x2
4 +

2385
1372

x2x2
4 −

8751
5488

z2x3x2
4

−
5475
1372

x1x2x4 −
9855
2744

z2x2x3x4. (A10)

APPENDIX B: NON-LINEAR TRANSFORMATIONS

The non-linear transformations between the co-ordinates xi and the normal
form co-ordinates yi for the case of one simple zero and a pair of purely
imaginary eigenvalues are given as follows.

x1 = y1 +0 3
14

m2 −
3
2

m11y2 +z6027
56

m2 +
3
8

m11y3 −
4367
36

y3
2 −

209 129
3024

z6y3
3

+
75
16

y2
1y2 +

889
384

z6y2
1y3 −

113
16

y1y2
2 −

146 345
2016

z6y2
2y3 +

113
16

y1y2
3

−
703
21

y2y2
3 +

413
384

z6y1y2y3, (B1)

x2 = y2 +0189
620

m1 −
3

155
m21y1 +0 423

2480
m1 −

219
2480

m21y2 +z60 171
9920

m1

−
603
9920

m21y3 −
19 159
11 904

y3
1 −

3 197 209
238 080

y3
2 −

1 266 797
317 440

z6y3
3 −

6167
1280

y2
1y2

−
7259
5120

z6y2
1y3 −

290 927
14 880

y1y2
2 −

1 263 009
317 440

z6y2
2y3 −

90 797
7440

y1y2
3

−
833 391
79 360

y2y2
3 −

81 781
5952

z6y1y2y3, (B2)
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x3 = y3 −z60 609
4960

m1 −
297
4960

m21y1 +z60 171
9920

m1 −
603
9920

m21y2 −0 423
2480

m1

−
219
2480

m21y3 +
52 507
47 616

z6y3
1 −

2 915 873
952 320

z6y3
2 +

971 781
79 360

y3
3

−
7259
5120

z6y2
1y2 +

6167
1280

y2
1y3 +

853 951
59 520

z6y1y2
2 +

1 115 257
79 360

y2
2y3

+
191 191
29 760

z6y1y2
3 −

2 147 527
317 440

z6y2y2
3 −

26 075
1488

y1y2y3, (B3)

x4 =−0 17
155

m1 +
1411
7595

m21y1 −0 1326
24 025

m1 +
3774

33 635
m21y2 −z60 1632

24 025
m1

+
3672

33 635
m21y3 −

34 459
31 248

y3
1 +

2 130 802 049
31 568 850

y3
2 −

856 323 592
110 490 975

z6y3
3

+
256 411
192 200

y2
1y2 −

979 727
288 300

z6y2
1y3 +

2 149 191
221 960

y1y2
2

−
944 269 369
36 830 325

z6y2
2y3 −

2 149 191
221 960

y1y2
3 +

1 297 000 448
36 830 325

y2y2
3

+
25 585
16 647

z6y1y2y3. (B4)

The non-linear transformations for the case of two pairs of purely imaginary
eigenvalues (non-resonance) between the co-ordinates xi and the normal form
co-ordinates yi are given by

x1 = y1 +011
14

m1 −
75
112

m21y2 +z2033
14

m1 −
135
28

m21y4 −
28 255 501
22 127 616

y3
1

+
625

10 976
y3

2 −
2 984 145
653 072

y3
3 +

14 580
5831

z2y3
4 +

3125
10 976

y2
1y2

−
2 442 681
268 912

y2
1y3 +

5625
2401

z2y2
1y4 +

32 815 295
22 127 616

y1y2
2 −

13 471 055
1 613 472

y2
2y3

+
2250
2401

z2y2
2y4 −

3 334 573
614 656

y1y2
3 +

18 225
5831

z2y2
3y4 +

17 067
5488

y1y2
4

+
2025
1372

y2y2
4 −

7 697 901
2 612 288

y3y2
4 −

2250
2401

y1y2y3 +
7 008 563
1 613 472

z2y1y2y4

+
6075
2744

z2y1y3y4 −
2 411 799
1 229 312

z2y2y3y4, (B5)
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x2 = y2 +011
14

m1 −
75
112

m21y1 −033
14

m1 −
135
28

m21y3 +
3125

32 928
y3

1 +
18 077 035
22 127 616

y3
2

−
15 795
5831

y3
3 −

10 523 687
5 224 576

z2y3
4 −

2 279 897
22 127 616

y2
1y2 −

1125
2401

y2
1y3

−
10 239 809
1 613 472

z2y2
1y4 +

1875
10 976

y1y2
2 −

6750
2401

y2
2y3 −

7 647 523
3 226 944

z2y2
2y4

+
1 430 797
614 656

y2y2
3 −

2 984 145
1 306 144

z2y2
3y4 +

2025
1372

y1y2
4 −

69
5488

y2y2
4

−
14 580
5831

y3y2
4 +

1 455 883
403 368

y1y2y3 +
4500
2401

z2y1y2y4 −
3 342 301
1 229 312

z2y1y3y4

−
2025
2744

z2y2y3y4, (B6)

x3 = y3 +074
21

m1 −
265
84

m21y2 −z20 37
112

m1 +
159
224

m21y4 −
13 083 179
7 260 624

y3
1

+
13 250
21 609

y3
2 +

10 816 397
9 834 496

y3
3 −

4293
21 952

z2y3
4 +

6625
21 609

y2
1y2

+
31 624 067
11 063 808

y2
1y3 −

3975
5488

z2y2
1y4 −

79 685 939
14 521 248

y1y2
2 −

1 177 091
3 687 936

y2
2y3

+
1325
5488

z2y2
2y4 +

4 250 405
1 959 216

y1y2
3 +

31 005
5831

y2y2
3 −

21 465
21 952

z2y2
3y4

−
101 239 255
7 836 864

y1y2
4 +

9540
5831

y2y2
4 −

8 645 183
9 834 496

y3y2
4 −

5475
1372

z2y1y2y4

−
23 850
5831

z2y1y3y4 +
21 906 895
3 918 432

z2y2y3y4, (B7)

x4 = y4 −z2074
21

m1 −
265
84

m21y1 −z20 37
112

m1 −
159
224

m21y3 −
33 125
64 827

z2y3
1

−
132 018 655
43 563 744

z2y3
2 −

7155
21 952

z2y3
3 −

22 718 401
29 503 488

y3
4

−
13 083 179
7 260 624

z2y2
1y2 −

3975
5488

z2y2
1y3 +

12 526 333
11 063 808

y2
1y4

−
13 250
21 609

z2y1y2
2 +

1325
5488

z2y2
2y3 −

13 539 709
3 687 936

y2
2y4 −

11 925
5831

z2y1y2
3

−
15 770 705
1 959 216

z2y2y2
3 −

1 085 607
9 834 496

y2
3y4 −

28 620
5831

z2y1y2
4

−
7 051 605
2 612 288

z2y2y2
4 −

12 879
21 952

z2y3y2
4 −

2 248 765
2 765 952

z2y1y2y3

−
1325
686

y1y2y4 +
10 010 555
979 608

y1y3y4 +
19 080
5831

y2y3y4. (B8)
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The non-linear transformations for the case of two pairs of purely imaginary
eigenvalues (1:1 resonance) between the co-ordinates xi and the normal form
co-ordinates yi are given below.

x1 = y1 −
1
16

m1y2 +
5
8

m2y3 +
255
16

y3
1 +

205
32

y3
2 +

205
32

y3
2 −

7693
384

y3
4 +

105
32

y2
1y2

−
16 785

64
y2

1y3 −
1177
32

y2
1y4 +

243
16

y1y2
2 +

16 785
64

y2
2y3 +

345
32

y2
2y4

−
1623
128

y1y2
3 +

45
256

y2y2
3 +

1613
128

y2
3y4 +

4503
128

y1y2
4 −

1005
256

y2y2
4

+
12 495
128

y3y2
4 +

615
16

y1y2y3 −
16 815

32
y1y2y4 +

45
128

y1y3y4

−
1321
64

y2y3y4, (B9)

x2 = y2 −
1
16

m1y1 −
5
8

m2y4 −
45
32

y3
1
+

159
16

y3
2 −

1681
128

y3
3 −

27 045
128

y3
4 +

115
16

y2
1y2

−
985
32

y2
1y3 +

17 265
64

y2
1y4 −

105
32

y1y2
2 +

153
32

y2
2y3 −

17 265
64

y2
2y4 −

915
256

y1y2
3

−
3433
128

y2y2
3 −

32 625
128

y2
3y4 −

45
256

y1y2
4 +

553
128

y2y2
4 −

1037
128

y3y2
4

−
17 295

32
y1y2y3 −

391
16

y1y2y4 +
2391
64

y1y3y4 −
45
128

y2y3y4, (B10)

x3 = y3 −
1
8

m1y1 −0 1
16

m1 +
5
4

m21y4 +
15
8

y3
1 −

21
4

y3
2 −

1691
128

y3
3 −

80 085
256

y3
4

−
41
4

y2
1y2 +

299
16

y2
1y3 +

315
32

y2
1y4 +

75
8

y1y2
2 −

123
16

y2
2y3 +

405
32

y2
2y4

−
33 765

64
y1y2

3 +
117
32

y2y2
3 −

217 665
256

y2
3y4 −

33 915
64

y1y2
4 +

363
32

y2y2
4

−
10 095
128

y3y2
4 −

165
16

y1y2y3 +
501
8

y1y2y4 +
1237
16

y1y3y4

−
315
32

y2y3y4, (B11)
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x4 = y4 +
1
8

m1y2 −0 1
16

m1 +
1
4

m21y3 +
23
12

y3
1 −

25
8

y3
2 −

10 795
256

y3
3 −

2897
384

y3
4

−
45
8

y2
1y2 −

405
32

y2
1y3 +

101
16

y2
1y4 +

1
4

y1y2
2 +

165
32

y2
2y3 +

683
16

y2
2y4

−
1227
32

y1y2
3 −

34 395
64

y2y2
3 +

3217
128

y2
3y4 −

917
32

y1y2
4 −

34 245
64

y2y2
4

−
56 895
256

y3y2
4 +

181
8

y1y2y3 −
315
16

y1y2y4 +
165
32

y1y3y4

+
363
16

y2y3y4. (B12)


